Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 6513, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316305

RESUMO

Tumors initiate by mutations in cancer cells, and progress through interactions of the cancer cells with non-malignant cells of the tumor microenvironment. Major players in the tumor microenvironment are cancer-associated fibroblasts (CAFs), which support tumor malignancy, and comprise up to 90% of the tumor mass in pancreatic cancer. CAFs are transcriptionally rewired by cancer cells. Whether this rewiring is differentially affected by different mutations in cancer cells is largely unknown. Here we address this question by dissecting the stromal landscape of BRCA-mutated and BRCA Wild-type pancreatic ductal adenocarcinoma. We comprehensively analyze pancreatic cancer samples from 42 patients, revealing different CAF subtype compositions in germline BRCA-mutated vs. BRCA Wild-type tumors. In particular, we detect an increase in a subset of immune-regulatory clusterin-positive CAFs in BRCA-mutated tumors. Using cancer organoids and mouse models we show that this process is mediated through activation of heat-shock factor 1, the transcriptional regulator of clusterin. Our findings unravel a dimension of stromal heterogeneity influenced by germline mutations in cancer cells, with direct implications for clinical research.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Ductal Pancreático , Clusterina , Fatores de Transcrição de Choque Térmico , Neoplasias Pancreáticas , Animais , Camundongos , Fibroblastos Associados a Câncer/metabolismo , Carcinoma Ductal Pancreático/patologia , Clusterina/genética , Clusterina/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Neoplasias Pancreáticas/patologia , Microambiente Tumoral/genética , Humanos , Neoplasias Pancreáticas
2.
mBio ; 13(4): e0142022, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35708277

RESUMO

During DNA replication, the newly created sister chromatids are held together until their separation at anaphase. The cohesin complex is in charge of creating and maintaining sister chromatid cohesion (SCC) in all eukaryotes. In Saccharomyces cerevisiae cells, cohesin is composed of two elongated proteins, Smc1 and Smc3, bridged by the kleisin Mcd1/Scc1. The latter also acts as a scaffold for three additional proteins, Scc3/Irr1, Wpl1/Rad61, and Pds5. Although the HEAT-repeat protein Pds5 is essential for cohesion, its precise function is still debated. Deletion of the ELG1 gene, encoding a PCNA unloader, can partially suppress the temperature-sensitive pds5-1 allele, but not a complete deletion of PDS5. We carried out a genetic screen for high-copy-number suppressors and another for spontaneously arising mutants, allowing the survival of a pds5Δ elg1Δ strain. Our results show that cells remain viable in the absence of Pds5 provided that there is both an elevation in the level of Mcd1 (which can be due to mutations in the CLN2 gene, encoding a G1 cyclin), and an increase in the level of SUMO-modified PCNA on chromatin (caused by lack of PCNA unloading in elg1Δ mutants). The elevated SUMO-PCNA levels increase the recruitment of the Srs2 helicase, which evicts Rad51 molecules from the moving fork, creating single-stranded DNA (ssDNA) regions that serve as sites for increased cohesin loading and SCC establishment. Thus, our results delineate a double role for Pds5 in protecting the cohesin ring and interacting with the DNA replication machinery. IMPORTANCE Sister chromatid cohesion is vital for faithful chromosome segregation, chromosome folding into loops, and gene expression. A multisubunit protein complex known as cohesin holds the sister chromatids from S phase until the anaphase stage. In this study, we explore the function of the essential cohesin subunit Pds5 in the regulation of sister chromatid cohesion. We performed two independent genetic screens to bypass the function of the Pds5 protein. We observe that Pds5 protein is a cohesin stabilizer, and elevating the levels of Mcd1 protein along with SUMO-PCNA accumulation on chromatin can compensate for the loss of the PDS5 gene. In addition, Pds5 plays a role in coordinating the DNA replication and sister chromatid cohesion establishment. This work elucidates the function of cohesin subunit Pds5, the G1 cyclin Cln2, and replication factors PCNA, Elg1, and Srs2 in the proper regulation of sister chromatid cohesion.


Assuntos
Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromátides/genética , Cromátides/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Ciclinas/genética , DNA Helicases/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Coesinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...